64th meeting of IFIP WG 10.4 Workshop on Dependability and Fault Tolerance

Report on Session 3 — Jean Arlat

- Al Avižienis The Architecture of a Resilience Infrastructure for Computing and Communication Systems
- Jacob Abraham Defects and Faults in Emerging Circuit Technologies
- Hermann Kopetz A Conceptual Model for the Information Transfer in System of Systems

Al Avižienis Talk 1/2

Design a generic, FT, SW-free Resilience Infrastructure (RI)

- About Resilience
 - ◆ Elaboration on J.-C. Laprie Definition (Dependability when facing changes)
 "Changes" -> "Harmful changes"
 - + Exceed limits of expected threats
 - + Unexpected threats
 - ♦ How is resilience created?
 - + Implicit Exceed specifications requirements: a) inadvertently, b) deliberately
 - + Explicit Add new features to system architecture to provide Resilience

Comment on related assumptions

- Resilience Infrastructure to provide Resilience to a Client
 - ◆ Physically separate (failure independence) from client
 - ◆ Generic to be able to serve any client
 - ♦ HW/firmware implemented
 - ◆ Fully self-protecting via HW FT techniques

Will this HW orientation still allow for adaptation?

Al Avižienis Talk 2/2

- Installation of the RI
 - ◆ Client formed of N subsystems (C-Nodes) —> Error-confinement region
 - ◆ Monitor node (M-node)
 - + ROM, non volatile status register
 - → S3 = Startup-Shutdown-Survival = multiple pairs of self-checking pairs
 - ◆ M-node cluster the M-Cluster (patented): TMR + 2 spares
- Possible target for investigation/deployement of the RI?
 - ◆ Human Exploration of Mars project
 - ♦ Very demanding level of resilience (1000 day manned mission)
 - ◆ RI Compatible with other FT features; it will "guard the guardians"
 - ◆ Absence of SW a major feature
 - ◆ Further comments and questions

 Importance of interfaces

 Role of simplicity in design

 Status messages protection?

 I am alive messages protected by fail-safe coding

 Probably complementary actions at SW level neded?

Jacob Abraham Talk 1/2

■ Historical pesrpective

- ◆ IC origin (late 50's),
- ◆ Original Moore's Graph (mid 60's)

■ IC complexity and computing power

- ◆ For past 3 decades: Transistor # × 2 every 26 months
- ◆ 32 nm in full production, 7 probably doable...
- ◆ Exponential rate of Emerging Technology for 110 years (Kurzweil)

Challenges

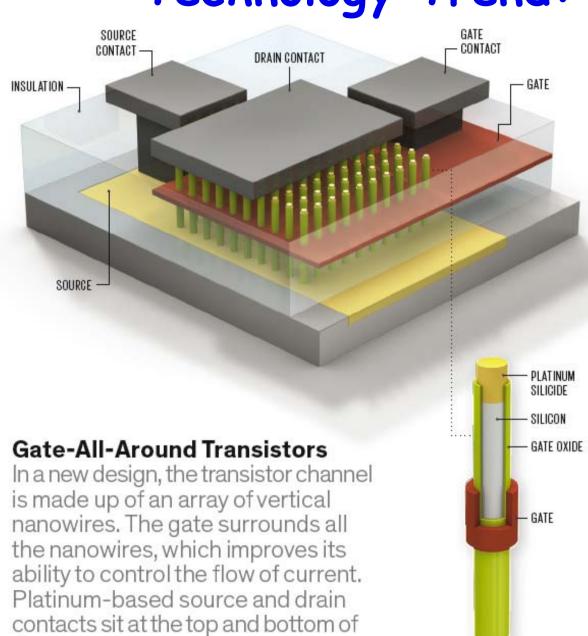
- ◆ Defects (development faults) = Manufacturing, wearout; Design bugs
- ◆ Faults (in operation) = HW: process-related, environmental; SW: bugs; System: external attacks
- Defect effects are "dynamic" -> new test methods (beyond stuck-at)

■ (Manufacturing) Fault-Tolerant ICs:

- ♦ Memories, FPGAs
- Carbon nanotube circuits
 - Self-assembled, so defects are to be expected "by design"
 - + Defect tolerant designs not in production, actually

Jacob Abraham Talk 2/2

- How to achieve printed features smaller than Lithography wavelength? Anticipate the distorsion ©
- Line edge roughness and line width —> delays, power leakage
- Examples of significant fluctuations
 - ◆ Dopant -> soon only few 10th of atoms in Channel -> quantum physics effects!
 - ◆ Gate oxide thickness —> MOS with actual Metal (intead of polysilicon)
 - ◆ Temperature
 - Dynamic voltage and power variations


What about 3D structures?

Communication delays

- Fault processing in operation
 - ◆ Circuit level: Transient error detection via delayed signal latching (shadow latch)
 - ◆ Application level: Checksum (example JPG picture)

Do we really care about the increase in HW-level faults Manufacturers care about defects more than fault in operation

Technology Trend: Nanowire FETs'

the nanowires.

Ring Around the Nanowire News Section, IEEE Spectrum, May 2013, pp.14-16

Hermann Kopetz Talk 1/2

Systems of Systems — Focus on Information representation

- ◆ Semantic vs representation of information
- ◆ Impact of inadequacies at the semantic level
- Itom = <u>Information Atom</u> (data + explanation of the data)
 - ◆ Data = artifact
 - ◆ Explanation : Gives meaning to the data
- Afferent (input) vs Efferent (output) Data
 - ◆ Example: Electronic Toll Collection
- Explanation of the Data
 - ◆ Identification Purpose, Meaning, Time, Ownership
 - ◆ Cultural issues involved, Receiver: Human or Machine
- Representation of an Itom
 - ♦ Markup languages, such as XML
- Itoms properties
 - Name, Purpose, Thruthfulness (no assumption made), Temporal, Neutrality, Phycalism (storage)

Hermann Kopetz Talk 2/2

■ Itoms for Humans

- ◆ <u>Understandability</u> = Patterns, Symbols, ... to represent the Itom are compatible with *conceptual landscape* in the human mind of receiver
- ◆ <u>Utility</u> = User dependent, difficult to quantify

■ Itoms for Machines

- ◆ Data: Bit strings; Explanations: Computer instructions & explanation of purpose
- ◆ Digital object data and Digital metadata
- Recursion -> Data processable by Machine Design of computer serves as an explanation for the meaning of the data
- Communication: Itoms exchange using Gateways

Comments and questions

Connection to Ontologies?

Emerging behaviors?

Connection with OSI/ISO layers?

Timing issues not properly involved

Open systems vs. SoS?

General Discussion

- Bottleneck due to HW implementations
- On-chip monitors more observability OK; Security issues?
- Predictions based upon Analog aging monitors?

 Getting close to margins provides a possible trigger?
- Low level errors do no matter any longer? Much cheaper recovery mechanisms at application level
- HW manufacturers do not develop applications; they mostly care about the yield issue
 - See ITRS recommendation for Reliability and Resilience
 - 2011 Edition/2012 Update: Design for Reliability and Resilience confirmed as
 - "New long-term Grand Challenge" (together with design of concurrent software)
 - "Design Technology for Resilience: A Fundamental Portion of DFM"
- Embeded systems more FT mech. needed at processor level
- Computation cores can be including extra nodes
- Strong dependence on Application wrt these statements